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Addressing Cache in Airborne Systems and Equipment 
 
1.0 Introduction 

Many applicants utilize cache memory in microprocessors to accelerate the speed of 
memory access, thus improving processor throughput.  However, using cache memory 
increases the complexity and accuracy of the worst-case execution time (WCET) 
analysis and introduces challenges for coherency, deterministic execution, correct 
memory management, and partitioning protection.  This paper considers some of the 
concerns and current approaches to addressing cache memory usage in airborne 
systems and equipment.   

 
2.0 What is Cache Memory and Why is It Used? 

Cache memory is a relatively small and fast memory used as temporary storage for data 
and instructions by the central processing unit (CPU) of modern microprocessors.  A 
memory manager is typically used to optimize the contents of the cache memory for 
maximum throughput.   
 
Modern processors are increasingly reliant on cache memory.  Some processors even 
have two levels of cache memory: L1, which is primary cache (small and fast with no 
wait states) and L2, which is secondary cache (slower than primary cache since it has 
some wait states, but faster than main memory) [2].   

 
3.0 What Are The Certification Concerns with Cache Memory? 

There are number of concerns regarding the usage of cache memory.  In many airborne 
systems containing multiple software functions of different software levels, cache 
memory is a common resource used by all the software functions executing on that 
microprocessor. Therefore, providing protection mechanisms and partitioning between 
those functions can be very challenging and necessitates thorough analyses and complete 
robustness testing of the approach and implementation of cache memory management.  
Additionally, many cache management approaches rely heavily on commercial-off-the-
shelf (COTS) hardware components, such as memory management units (MMUs) and 
watchdog timers, that, if relatively new and untested, may not have a history of reliable 
and predictable performance integrity.  In many safety-critical real-time systems, certain 
“critical” code functions must execute at a specific frequency (or when certain events 
occur) reliably, while other software functions in the same application may have less 
time-critical need for control of the processor and its resources. Obviously, safety-related 
time-critical code must execute reliably and timely, independent of other function’s 
(sharing the processor resources) needs.  Other concerns revolve around WCET analysis 
complexity and accuracy when using cache memory.  Some of the specific certification 
concerns are described below (not an exhaustive list):  

 
3.1 Establishing An Accurate WCET 
 

DO-248B/ED-94B, FAQ #73 includes the following text [4]: 
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DO-178B/ED-12B[1]  states that the worst-case timing should be determined.  Section 
6.3.4f of DO-178B/ED-12B states that as part of meeting the verification objective of the 
source code being accurate and consistent, the worst-case timing should be determined 
by review and analysis for Levels A, B, and C software.  The results of this review and 
analysis should be documented in the Software Accomplishment Summary as timing 
margins (reference Section 11.20d of DO-178B/ED-12B).   

 
The worst-case timing could be calculated by review and analysis of the source code and 
architecture, but compiler and processor behavior and its impact also should be 
addressed. Timing measurements by themselves cannot be used without an analysis 
demonstrating that the worst-case timing would be achieved, but processor behavior 
(e.g., cache performance) should be assessed.  Using the times observed during test 
execution is sufficient, if it can be demonstrated that the test provides worst-case 
execution time.   
 
Currently, one of the major concerns with fully cached systems is the inability to 
establish a predictable timing evaluation.  The concern is not only with data cache but 
also with instruction caching (which includes pipelining and branch prediction 
algorithms).  If the program has no interrupts, the concern might be trivial.  However, 
when asynchronous interrupts are allowed, the path of execution of the program has no 
tracking of the cache state; therefore, the time at any given point in a program to fetch the 
next item from memory (data or instruction) is unknown.  Figure 1 below shows how 
pipelines, caches, registers, and main memory are integrated in a typical modern 
processor.  Figure 2 illustrates the pipeline structure for the PowerPC 603e.  Both of these 
illustrations are borrowed from [2]. 
 

 
 
 



 
 
 
The predominant concern is the ability to predict the timing behavior of the next fetch or 
a given sequence of instructions and associated data execution paths. 
 

 
3.2 Variations Execution Times 

 
Use of cache memory results in greater variations in the execution times of the software 
[3].  Again, this makes accurate predictability a concern. 
 

3.3 Cache Modeling Accuracy  
 
The more complex the processor, the more difficult it is to validate the models used to 
predict cache performance.  With memory cache enabled, it is more difficult to deduce 
the actual WCET of the software, because the analysis would need to include a model of 
the cache mechanism [2].  Since the cache management mechanism is typically COTS 
hardware, obtaining an accurate model is difficult or impossible.  In some cases, it might 
be assumed that all memory accesses will result in a cache miss; however, this leads to 
wasted resources [2]. 
 

3.4 Real-Time Operating System Use of Cache  
 
When real-time operating systems (RTOS) and run-time systems are used, they utilize the 
processor’s cache memory.   
 
The FAA recently sponsored research on COTS RTOS.  One excerpt from the report 
states [5]: Cache memory is indeed more of a hardware issue, however complex 
microprocessors that contain and use cache memory do have an affect on the 
performance of the RTOS. Under consideration is how should one handle non-
deterministic cache that is shared among partitions. Complex cache algorithms may 



require a validation of the caching scheme for determinism and cache overhead should 
be accurately accounted. 
 
A particular area of concern is partitioned RTOSs.  The FAA report, section 4.1.3.4 states 
the following regarding cache memory and partitioning [5]: 
 
An area that deserves particular attention is the use of cache memory in a partitioned 
computer platform environment. A cache is typically small-size, high-speed memory, or a 
hierarchical set of memory, that resides between the CPU and the main memory. Cache 
memory contains a copy of the most frequently accessed memory locations, which can 
reduce the overall memory access time. The use of cache can lead to non-deterministic 
execution time for functions, depending on how much of the data needed by the function 
is available in cache. This behavior may be further aggravated by the fact that cache is 
typically a shared resource among partitioned functions, which may lead to cross-
interference among partitioned functions in the time domain, and violate the partitioning 
protection. Depending on the state in which the cache memory is left by a function in a 
partition, the execution time of the next function scheduled to execute may vary. Even 
though the execution time of a function is non-deterministic due to cache, it is still 
bounded by the worst case of having all accesses directly to/from main memory. Since 
worst-case analysis is crucial in safety-critical, real-time systems, timing analysis, and 
scheduling to tasks should address protection of the partitioned functions considering the 
presence and use of cache memory.  Interference of cache in the spatial domain can be 
controlled using memory protection mechanisms such as MMU and SFI. However, the 
use of cache introduces an additional concern of maintaining cache coherency such that 
the cache swapping is valid at all times. Changing a datum only in cache or main 
memory, without reflecting it in its copied version, may result in inconsistent or 
erroneous behavior. Techniques for preserving cache coherency should be verified, and 
the overhead should be accurately analyzed and addressed in worst-case scenarios. 
 

3.5 Cache Coherency 
 
Maintaining coherency between the data cache and RAM and between the instruction and 
data caches is a concern when cache is used.  Different architectures tend to use cache in 
a variety of ways, making it difficult to address with a single solution.  For example, 
there are two separate caches on the PowerPC, one for instructions and one for data.  
Each cache has its own encoding to control the cache coherency.  Figure 3 below shows 
potential coherency issues with the PowerPC (PPC). 
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Figure 3 – Cache Coherency 
 
The loss of cache coherency may occur in three places: 
 
(1) Between data cache and RAM.  This results from asynchronous accesses (reads and 

writes) to the RAM by the processor and other masters.  Adding code into the drivers 
to address the other masters can often remedy this problem. 

(2) Between instruction cache and data cache.  This results in cache getting out of sync 
when the loader, debugger, or interrupt connection routines are used.  Instructions 
may be loaded into data cache but not instruction cache, resulting in a coherency 
problem.  This is typically addressed by flushing the data cache entries to RAM and 
invalidating the instruction cache entries (this will be addressed further in section 4). 

(3) Shared cache lines.  When cache lines are shared by more than one task, coherency 
problems may be introduced.  This is often addressed by allocating memory on a 
cache line boundary, then rounding up to a multiple of the cache line size. 

 
3.6 Cache Jitter and Partitioning 

 
Section 2.2.6 of [7] introduces the concerns of caching on partitioning by stating: 
 
Cache memory is a hardware architecture mechanism whose primary purpose is to 
improve performance of an application running on the target processor.  It accomplishes 
this by holding information in a local high-speed cache memory, and synchronizing this 
information with the contents of main memory as needed.  Cache memory should receive 
special scrutiny in a partitioned system because the cache mechanism is not aware of the 
address partitioning architecture.  When an application runs within one partition, it 
forces the CPU to load information, which is then preserved for as long as possible 



within the cache.  Subsequent partitions may be affected by the presence of data in the 
cache.  As cache memory is common to all partitions, the use of this resource requires 
careful analysis.  Write-through and/or cache flushing techniques, among others, may be 
needed. 
 
Section 4.2 of [7] specifically addresses cache jitter as it relates to partitioning:   
 
Cache memory is a global resource that is shared between partitions.  The information in 
cache may contain page address values, data values, and code.  When a reference to a 
particular value is encountered, an automatic search is performed in the cache memory.  
If the value is found, it is used directly (cache hit); if the value is not found, it must be 
loaded (cache miss).  The load is much slower, as it requires an off-chip memory access 
cycle.  Once loaded, the value may be re-used for as long as it remains in cache memory.  
The cache is very fast but expensive (per bit), so it is much smaller than typical off-chip 
memories.  See section 2.2.6 for details.   
 
Imagine four partitions:  P1, P2, P3 and P4.  Assume a simple scenario where these 
partitions have a duration of 25 msec and a period of 100 msec.  According to our rules 
for partitioning, it must be impossible for any partition to influence any other or to only 
affect other partitions in well-defined and controlled ways.  During integration testing it 
is determined that all partitions complete their processing in their allotted time slots.  
This may have been accomplished because partitions P1, P2, and P3 perform some very 
intensive computations that use little data and very little code during the computations.  
Code can consist of small, highly computational loops.   
 
Under these conditions, three partitions may use very little of the cache.  Partition P4 
will have much of the cache available to itself, and it will have very few cache misses in 
each iterative period.  Under “normal” conditions, P4 will complete its work within its 
allotted period.   
 
Imagine the situation where P3 suddenly changes its mode of operation, such that it 
references a large amount of data and executes a lot of code just once rather than 
referencing a small amount of code iteratively.  P3 will cause P4 to have many cache 
misses for both code and data.  This may result in P4 growing by a factor large enough 
to cause it to miss its deadline.  Clearly, this violates the principles of partitioning, 
because one partition has caused another to fail, which is unacceptable.   
 
The problem may be lessened by selecting different caching modes.  In ‘copy-back’ mode, 
a data value is held in the cache until space is required for a new value.  Before the 
cache memory location obtains its new value, the old value is written to the target 
memory location.  The memory store and memory load are still performed every time a 
data value is updated, but several updates in memory may be performed without 
extraneous reads and writes.  Absence of cache misses reduces the reads and copying 
back to memory.   
 
A ‘copy-through’ cache policy forces the value in cache to be copied back to memory 
each time a value is updated.  As long as a value is in cache, it will be re-used, but as 
soon as it is changed, it is written back to memory.  This policy reduces the read from 
memory, but it does not decrease the writes.   
 



It may appear that the ‘copy-through’ policy is always more efficient and should be used 
exclusively, but this may or may not be the case depending on the distribution of the data 
accesses.   
 
A ‘data value read’ results in the placement of the value in the referenced memory 
location as well as the adjacent locations.  Depending on cache-line length, this could be 
a 32-byte memory fetch and a corresponding 32-byte write.  If a copy-through policy is 
used, then only one memory location is written.  If memory reference density is high, then 
the copy-back policy is more efficient otherwise; the write-through may be more efficient, 
depending upon the program.   
 
Data reads are not affected.  Because code is not copied back, it is unaffected by the 
copy-back mode.   

 
[7] goes on to say:  The loss of processing throughput due to cache misses becomes more 
important if it affects short time events.  A partition may have processes that perform 
calculations, and which synchronize with other processes.  These synchronization events 
may be issued with time outs so that if a process is blocked, its blocking time is limited.  
In the presence of delays caused by cache misses the calculation times, and thus 
synchronization responses, may be affected.  Cache misses can affect the behavior of 
processes within a partition, even though the effect can be bounded when analyzed over a 
partition’s duration.   
 
Design assurance concerns must include not only the cache-induced jitter on partition 
start and duration, but the effect on internal timing events as well. 
 

3.7 Cache Failure 
 
When a system relies on cache, the failure of that cache (e.g., loss or corruption of cache 
data due to power interrupt) should be considered in the system safety assessment.  
 

4.0 Approaches to Dealing With Cache 

A number of approaches have been or are being proposed regarding the use of memory 
cache.  Some of those approaches are discussed below: 
 

4.1 No-Cache Approach 
 

One approach is to turn off cache or to use the no-cache as the data point for the WCET.  
The no-cache approach usually severely inhibits the processor performance and is not 
acceptable for most systems.  (Note:  When a system relies on cache, the failure of that 
cache should be considered in the system safety assessment.  The no-cache approach may 
help to validate the safety assessment.) 
 

4.2 Use Processor Tools 
 

One approach is to use the various processor tools to manage cache in an intelligent way 
that guarantees good performance for the majority of the functions (e.g., all safety-critical 
or time-critical functions).  The concern here is the tool accuracy, reliability, integrity, 
and determinism.   
 



4.3 Statistical Evaluation 
 

Another potential approach (suggested by some but not yet implemented) is to use some 
sort of statistical evaluation of the timing analysis and relate it to a safety analysis.  Note 
that this is very close to a statistical problem that obeys the usual rules of randomness and 
some estimation of the probability of being with a given timing budget could be obtained 
and possibly entered into the safety analysis. There are several issues dealing with what 
inputs would qualify to ensure a truly statistical description of the timing but it may be a 
feasible approach. 
 

4.4 Removing Signals 
 

When there is a disparity in the severity of hazards between corrupted outputs and 
removal of outputs, another potential approach may be considered.  For example, loss of 
an ILS signal can be considered to be minor, whereas misleading ILS could be 
considered hazardous.  In these cases, detection of a timing problem could result in 
removal of the signal before it resulted in potentially misleading guidance. 
 

4.5 System Architecture 
 

For some systems it may be possible to architect the system in such a manner that it is 
impervious from a safety viewpoint due to timing variations.  This clearly depends on the 
system and is not a universal solution. 
 

4.6 Inserting Code 
 

It might be feasible to insert “snooping code” into the microprocessor to determine its 
behavior and assist in accurate WCET analysis. 

 
 
4.7 Addressing Cache Coherency 
 

Some of the approaches for dealing with cache coherency were briefly mentioned in 
section 3.5 above.  Addressing cache coherency in multiple architectures typically 
requires designing for the case with the greatest number of coherency issues (i.e., assume 
Harvard architecture (separate instruction and data caches), copyback mode, DMA 
devices, multiple bus masters, and no hardware coherency support).  Typically, hardware 
is the most optimal way to maintain cache coherency.  

 
4.8 Addressing Cache Jitter and Partitioning 
 

As described in 3.6 above, cache jitter can affect partitioning assumptions. When 
considering design assurance, the applicant should address the following questions [7]: 

 

• Does the behavior of the cache affect time allocated to a partition and performance? 

• Can the worst-case partition execution time be tested, by flushing the cache in a 
preceding partition window? 

• Is there a mechanism provided to control the cache behavior at partition switches?  



• Does the system integrator control the cache behavior through the system 
configuration tables?  

 
[7] states:  

 
There are several solutions to make the cache behavior more predictable: 

• Switch the cache off:  While this may seem attractive because it makes each of the 
partition execution profiles deterministic, it places a large performance penalty 
indiscriminately over all of the partitions.   

Most programs assume the availability of cache memory and expect the performance 
improvement that they are given.   

• Specify a huge jitter margin:  When designing the partitioned system, specify that 
each partition switch will include a margin that is equivalent to a cache miss on 
every value in the cache.  This overhead is subtracted from each partition’s duration.  
Each process in a partition must be verified independently under these timing 
conditions.   

The disadvantage to this solution is that each partition is subject to the same fixed 
margin.  A partition with a very short duration looses a large percentage of its 
permissible processing capability, especially if the cache is large.   

• Selective flushing:  For those system applications that require very deterministic 
performance, the cache could be flushed during the partition switch such that the 
incoming partition has a clear cache memory at the start of its duration.  Flushing 
means copying all of the cache values only present in the cache back to main memory 
(i.e., they have been updated and copy-back mode is used). 

This places the overhead at the start of the partition rather than it being distributed 
throughout.  The time taken to perform this operation is not fixed, as it depends on 
the number of values that must be written to memory.   

• Selective Invalidate:  For system applications executed in a write-through mode for 
which deterministic execution is required, the cache may be invalidated during a 
partition switch.  A cache invalidate is very fast.  A single instruction makes the 
cache appear empty.  Subsequent data reads are stored in the cache and reused as 
normal.   

 
The start of a partition can be precisely predicted.  The timer interrupt to start the 
partition switch should be very accurate, and the time to switch context (save and restore 
all of the registers) will be constant.  Additional overhead to select the next partition 
should also be small, and its maximum well specified, especially as the partition 
scheduling is based on a simple round-robin algorithm.   

 
 
4.9 Cache Flushing  
 

Cache flushing has been mentioned a few times in this paper.  It is a practical approach 
that is frequently used in cached systems to preserve cache coherency and to deal with 
partitioning concerns.  It prevents a partition from depending too much on the history 
(i.e., by flushing the cache, the current partition doesn’t depend on previous partition 



execution); there is also less “variability” in the execution time (as the cache memory 
state “starting point” is always the same at the beginning of the partition execution).  
 

4.10 Other Approaches 
 

[6] proposes that the following four technologies are most-often used for measuring 
software execution speed: 

• Logic analyzers 
• In-circuit emulators 
• Hardware-assisted software performance monitors 
• Software assisted software performance profiles 

 
According to [6], the technologies typically use one or more of the following 
fundamental measurement methods: 

• Determining where the system is spending its time (e.g., profiling). 
• Monitoring the ability of critical sections of code to meet their deadlines. 
• Measuring a system’s response to external events. 

 
All of these measurement techniques have some kind of effect on the system 
performance.  Therefore, the performance measurement technique must take into account 
the effect on the software being developed. 
 

5.0 Certification Authorities Position   

The issues presented in section 3 of this paper should be addressed by applicants using 
cache, as well as any other “shared” processor resources and project-specific issues.  
Applicants should address any use of cache in their software plans. In some cases, a 
project-specific issue paper or certification review item may be needed to obtain 
agreement between the certification authority and applicant.  Section 4 provides some 
potential approaches; however, the details of these approaches should be closely 
coordinated with the certification authorities.  Most applicants use proprietary approaches 
that have not been detailed in this paper. 
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